Posts Tagged ‘Carbonyl’

What is the approach trajectory of enhanced (super?) nucleophiles towards a carbonyl group?

Wednesday, May 11th, 2016

I have previously commented on the Bürgi–Dunitz angle, this being the preferred approach trajectory of a nucleophile towards the electrophilic carbon of a carbonyl group. Some special types of nucleophile such as hydrazines (R2N-NR2) are supposed to have enhanced reactivity[1] due to what might be described as buttressing of adjacent lone pairs. Here I focus in on how this might manifest by performing searches of the Cambridge structural database for intermolecular (non-bonded) interactions between X-Y nucleophiles (X,Y= N,O,S) and carbonyl compounds OC(NM)2.

The search query[2] is shown above and involves plotting the distance from the nucleophilic atom (N above) to the carbon of the carbonyl group. The carbon is defined as having 3-coordination, one of which is O=C and two non-metal attachments. The torsion is constrained to values of |70-110|° to ensure that the approach of the nucleophile is approximately perpendicular to the plane of the carbonyl in order to overlap with the π*-orbital as electrophile. The pairwise sums of van der Waals radii are NC, 3.25; OC, 3.22 and SC, 3.5Å and the plots show all contacts shorter than these. The results of the searches are shown below.

The general observation is that the red hotspots do tend to come at trajectory angles of <100° and many are <90° such as the X=Y=N or X=Y=S examples. Given that the original Bürgi–Dunitz hypothesis (actually based on a small number of molecules synthesized for the purpose) proposed rather larger angles (105±5°) corresponding to optimum alignment of the nucleophile with the carbonyl π*-orbital, we might speculate whether the use of enhanced nucleophiles is the reason for the apparent decrease in the angle. And if so, what the underlying reasons would be.

I also cannot help but observe that the term supernucleophile is quite rare in the literature; SciFinder gives only 45 hits, but most are about neither hydrazines nor peroxides. There are also some unusual nucleophile varieties such as Cob(I)alamin[3], of which there are probably insufficient examples to reflect in the crystal structure statistics shown above. Given the interest in superbases, the relative lack of examples of unusual supernucleophiles seems surprising.

References

  1. G. Klopman, K. Tsuda, J. Louis, and R. Davis, "Supernucleophiles—I", Tetrahedron, vol. 26, pp. 4549-4554, 1970. https://doi.org/10.1016/s0040-4020(01)93101-1
  2. H. Rzepa, "Crystal structure search using enhanced nucleophiles", 2016. https://doi.org/10.14469/hpc/487
  3. K.P. Jensen, "Electronic Structure of Cob(I)alamin:  The Story of an Unusual Nucleophile", The Journal of Physical Chemistry B, vol. 109, pp. 10505-10512, 2005. https://doi.org/10.1021/jp050802m

The Bürgi–Dunitz angle revisited: a mystery?

Tuesday, May 12th, 2015

The Bürgi–Dunitz angle is one of those memes that most students of organic chemistry remember. It hypothesizes the geometry of attack of a nucleophile on a trigonal unsaturated (sp2) carbon in a molecule such as ketone, aldehyde, ester, and amide carbonyl. Its value obviously depends on the exact system, but is generally taken to be in the range 105-107°. A very good test of this approach is to search the crystal structure database (this was how it was originally established[1]).

search-BDThe search is defined as follows

  1. R can be either H or C
  2. The carbon is constrained to 3-coordinate
  3. The carbonyl oxygen is constrained to 1-coordinate
  4. QA can be any of N, O, S, Cl, F.
  5. QB can be any of H (aldehyde), C (ketone), N (amide), O (ester) or S (thioester).
  6. The distance QA…C is constrained to any intermolecular non-bonded contact ≤ the sum of the van der Waals radii of the two atoms involved and the angle QA…C=O is the Bürgi–Dunitz angle.
  7. I have also added a torsion constraint to specify that Nu has got to be ± 20° from orthogonality to the plane of the carbonyl to allow it to attack the π* orbital.
  8. The crystallographic R factor must be < 0.05, no disorder, no crystallographic errors and the temperature is either any or < 120K.

With no temperature specified, 6994 hits are obtained as below. So the most probable angle (red spot) is ~90°.

BD

One important change to the search is to decrease the temperature to 120K, since structures will have less vibrational noise. The number of hits decreases to 1279, but the most probable angle if anything reduces slightly.

BD-120K

So we have something of a mystery; this crystallographic data shows an angle of approach about 15° less than the oft quoted value. Here are some thoughts:

  1. This search is the average for all types of carbonyl, whereas the original suggestion was constrained to four types of nucleophiles and simple ketones.
  2. This search extends the interacting distance of the nucleophile and the carbon out to 3.5Å which is significantly longer than the normally considered length of ~2.85Å. The hotspots occur at about 3.15Å and not 2.85Å.
  3. There is obviously considerably more data available in 2015 than in 1974, and in particular at low temperature.
  4. The Bürgi–Dunitz angle is in fact one of two defining the trajectory, the other being the Flippin–Lodge angle which defines the displacement towards R or QB. The search above gives no direct information about this angle, but the torsion is related since it is constrained to bisect the C=O to within ± 20° and hence bisect the groups R and QB.
  5. An angle of ≤ 90° does not match to the normal explanation, which is that the nucleophile attacks the π* orbital, each lobe of which “leans out” from the centre at about 105° rather than leaning in at ≤ 90°.
  6. Decreasing the torsion range to  ± 5° at 120K gives 592 hits with a hot spot at 95°
  7. Also constraining the distance QA…C to be 0.3Å less than the van der Waals sum at 120K gives 59 hits with a hot spot at 95° and 2.9Å.

Well, to get to the bottom of this will require reducing the scope of both QA and QB, to find which if any of discrete values for these two variables can indeed give an angle of 105-107°. This would make for quite a good student group project; I expect a group of 8 students could sort this out quite quickly!

References

  1. H. B:urgi, J. Dunitz, J. Lehn, and G. Wipff, "Stereochemistry of reaction paths at carbonyl centres", Tetrahedron, vol. 30, pp. 1563-1572, 1974. https://doi.org/10.1016/s0040-4020(01)90678-7