Posts Tagged ‘Intermolecular forces’

Impossible molecules.

Monday, April 1st, 2019

Members of the chemical FAIR data community have just met in Orlando (with help from the NSF, the American National Science Foundation) to discuss how such data is progressing in chemistry. There are a lot of themes converging at the moment. Thus this article[1] extolls the virtues of having raw NMR data available in natural product research, to which we added that such raw data should also be made FAIR (Findable, Accessible, Interoperable and Reusable) by virtue of adding rich metadata and then properly registering it so that it can be searched. These themes are combined in another article which made a recent appearance.[2]

One of the speakers made a very persuasive case based in part on e.g. the following three molecules which are discussed in the first article[1] (the compound numbers are taken from there). The question was posed at our meeting: why did the referees not query these structures? And the answer in part is to provide referees with access to the full/primary/raw NMR data (which almost invariably they currently do not have) to help them check on the peaks, the purity and indeed the assignments. I am sure tools that do this automatically from such supplied data by machines on a routine basis do exist in industry (and which is something FAIR is designed to enable). Perhaps there are open source versions available?

17 18 19

 
328[3] 348 713

Here I suggest a particularly simple and rapid “reality check” which I occasionally use myself. This is to compute the steric energy of the molecule using molecular mechanics. The mechanics method is basically a summation of simple terms such as the bond length, bond angle, torsion angle, a term which models non bonded repulsions, dispersion attractions and electrostatic contributions. The first three are close to zero for an unstrained molecule (by definition). The last three terms can be negative or positive, but unless the molecule is protein sized, they also do not depart far from zero. A suitable free tool that packages all this up is Avogadro.

The procedure is as follows

  1. Start from the Chemdraw representation of the molecule. If the publishing authors have been FAIR, you might be able to acquire that from their deposited data. Otherwise, redraw it yourself and save as e.g. a molfile or Chemdraw .cdxml file.
  2. Drop into Avogadro, which will build a 3D model for you using stereochemical information present in the Chemdraw or Molfile.
  3. In the  E tool (at the top on the left of the Avogadro menu) select e.g. the MMFF94 force field. This is a good one to use for “organic” molecules for which the total steric energy for “normal” molecules is likely to be < 200 kJ. Calculate that for your system; this normally takes less than one minute to complete. The values obtained for the three above are shown in the table. All three are well over 200 kJ/mol, which should set alarm bells ringing.
  4. A “more reasonable” structure for 17 is shown below. This has a steric energy of 152 kJ/mol, some 176 kJ/mol lower than the original structure. This does not of itself “prove” this alternative, but it is a starting point for showing it might be correct.Of course mis-assigned but otherwise reasonable structures are unlikely to be revealed by the steric energy test. But impossible ones will probably always be flagged as such using this procedure. 

Postscript: Hot on the heels of writing this, the molecule Populusone came to my attention.[4] On first sight, it seems to have some of the attributes of an “impossible molecule” (click on diagram below for 3D coordinates).

However, it has been fully characterised by x-ray analysis! The steric energy using the method above comes out at 384 kJ/mol, which in the region of impossibility! This can be decomposed into the following components: bond stretch 30, bend 51, torsion 32, van der Waals (including repulsions) 177, electrostatics 87 (+ some minor cross terms). These are fairly evenly distributed, with internal steric repulsions clearly the largest contributor. The C=C double bond is hardly distorted however, which is in its favour. Clearly a natural product can indeed load up the unfavourable interactions, and this one must be close to the record of the most intrinsically unstable natural product known!

References

  1. J.B. McAlpine, S. Chen, A. Kutateladze, J.B. MacMillan, G. Appendino, A. Barison, M.A. Beniddir, M.W. Biavatti, S. Bluml, A. Boufridi, M.S. Butler, R.J. Capon, Y.H. Choi, D. Coppage, P. Crews, M.T. Crimmins, M. Csete, P. Dewapriya, J.M. Egan, M.J. Garson, G. Genta-Jouve, W.H. Gerwick, H. Gross, M.K. Harper, P. Hermanto, J.M. Hook, L. Hunter, D. Jeannerat, N. Ji, T.A. Johnson, D.G.I. Kingston, H. Koshino, H. Lee, G. Lewin, J. Li, R.G. Linington, M. Liu, K.L. McPhail, T.F. Molinski, B.S. Moore, J. Nam, R.P. Neupane, M. Niemitz, J. Nuzillard, N.H. Oberlies, F.M.M. Ocampos, G. Pan, R.J. Quinn, D.S. Reddy, J. Renault, J. Rivera-Chávez, W. Robien, C.M. Saunders, T.J. Schmidt, C. Seger, B. Shen, C. Steinbeck, H. Stuppner, S. Sturm, O. Taglialatela-Scafati, D.J. Tantillo, R. Verpoorte, B. Wang, C.M. Williams, P.G. Williams, J. Wist, J. Yue, C. Zhang, Z. Xu, C. Simmler, D.C. Lankin, J. Bisson, and G.F. Pauli, "The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research", Natural Product Reports, vol. 36, pp. 35-107, 2019. https://doi.org/10.1039/c7np00064b
  2. A. Barba, S. Dominguez, C. Cobas, D.P. Martinsen, C. Romain, H.S. Rzepa, and F. Seoane, "Workflows Allowing Creation of Journal Article Supporting Information and Findable, Accessible, Interoperable, and Reusable (FAIR)-Enabled Publication of Spectroscopic Data", ACS Omega, vol. 4, pp. 3280-3286, 2019. https://doi.org/10.1021/acsomega.8b03005
  3. A.I. Savchenko, and C.M. Williams, "The Anti‐Bredt Red Flag! Reassignment of Neoveratrenone", European Journal of Organic Chemistry, vol. 2013, pp. 7263-7265, 2013. https://doi.org/10.1002/ejoc.201301308
  4. K. Liu, Y. Zhu, Y. Yan, Y. Zeng, Y. Jiao, F. Qin, J. Liu, Y. Zhang, and Y. Cheng, "Discovery of Populusone, a Skeletal Stimulator of Umbilical Cord Mesenchymal Stem Cells from <i>Populus euphratica</i> Exudates", Organic Letters, vol. 21, pp. 1837-1840, 2019. https://doi.org/10.1021/acs.orglett.9b00423

The shortest known CF…HO hydrogen bond.

Sunday, March 24th, 2019

There is a predilection amongst chemists for collecting records; one common theme is the length of particular bonds, either the shortest or the longest. A particularly baffling type of bond is that between the very electronegative F atom and an acid hydrogen atom such as that in OH. Thus short C-N…HO hydrogen bonds are extremely common, as are C-O…HO. But F atoms in C-F bonds are largely thought to be inert to hydrogen bonding, as indicated by the use of fluorine in many pharmaceuticals as inert isosteres.[1] Here I do an up-to-date search of the CSD crystal structure database, which is now on the verge of accumulating 1 million entries, to see if any strong C-F…HO hydrogen bonding may have been recently discovered.

The search query uses the CF…HO distance as one variable, and the C-F-H angle as the second. The first diagram shows just intermolecular interactions, up to a distance of 2.7Å which is the sum of the van der Waals radii of the two elements. The hot spot occurs at this value, and an angle of ~95°.

The intra-molecular plot shows a similar value for the most common F…H distance, with the interesting variation that the angle subtended at F is about 80°. The outlier at the short end of the spectrum (arrow) was observed in 2014[2] with the structure shown below. It is indeed the current record holder by some margin! This length by the way is however a great deal longer than the shortest O…HO hydrogen bonds, which can be in the region of 1.2Å (with the proton sometimes symmetrically disposed between the two oxygen atoms). The value is also very similar to the record holder for the shortest C-H…H-C interaction.

It is always useful to check up on crystallographic hydrogen atom positions using a quantum calculation, so here is one at the ωB97XD/Def2-TZVPP level (Data DOI: 10.14469/hpc/5131) which replicates the values nicely.

ωB97XD/Def2-TZVPP Calculation

A QTAIM analysis of the critical points shows that the F…H BCP has a high value of ρ(r) (most hydrogen bonds only reach about 0.03 au).

NBO analysis indicates the  E(2) perturbation energy for donation from an F lone pair into the H-O σ* orbital is 21.2 kcal/mol, which indicates a strong  H-bond (typical C-O…HO values are 18-22 kcal/mol). The F…H bond order is 0.05.

This molecule has another interesting property, also noted in the original article;[2] the shift in wavenumber of the O-H stretching vibration. Most hydrogen bonds are characterised by the shift (mostly red and recently discovered blue shifts) that occurs in the OH group when it hydrogen bonds. These shifts are typically 100-200 cm-1 but in this molecule there is no shift, which is described as “exceptional”.

The 1H NMR shift of the OH proton is observed at δ 4.8 ppm, with the value calculated here (ωB97XD/Def2-TZVPP) being 4.75 ppm. A very large H-F coupling was observed of 68 Hz, again a very high value for a “through space” hydrogen bond.

So another record for the molecule makers to try to break!


Respectively 7142 and 31428 intermolecular (3859 and 10602 intra) examples using the same search parameters as above, with the shortest values being ~1.28 and ~1.2Å.

References

  1. S. Purser, P.R. Moore, S. Swallow, and V. Gouverneur, "Fluorine in medicinal chemistry", Chem. Soc. Rev., vol. 37, pp. 320-330, 2008. https://doi.org/10.1039/b610213c
  2. M.D. Struble, C. Kelly, M.A. Siegler, and T. Lectka, "Search for a Strong, Virtually “No‐Shift” Hydrogen Bond: A Cage Molecule with an Exceptional OH⋅⋅⋅F Interaction", Angewandte Chemie International Edition, vol. 53, pp. 8924-8928, 2014. https://doi.org/10.1002/anie.201403599

π-Facial hydrogen bonds to alkenes (revisited): how close can an acidic hydrogen approach?

Saturday, April 15th, 2017

Back in the early 1990s, we first discovered the delights of searching crystal structures for unusual bonding features.[1] One of the first cases was a search for hydrogen bonds formed to the π-faces of alkenes and alkynes. In those days the CSD database of crystal structures was a lot smaller (<80,000 structures; it’s now ten times larger) and the search software less powerful. So here is an update. 

The search query (dataDOI:10.14469/hpc/2473) is shown below:

  1. A mid-point (centroid) of a C-C bond (of any type) is defined, but the carbons are each restricted to being 3-coordinate, with the substituents R being either C or H.
  2. The distance to a hydrogen (attached to group QA, where QA is any one of N,O,F,Cl, i.e. acidic H) is defined.
  3. The properties of the alkene are defined by the sines of the two angles subtended at the centroid. This defines how perpendicular the QA-H hydrogen bond is to the C-C bond.
  4. Four torsions R-C-centroid-H are defined by their sines. The mean of the absolute values of these will define how orthogonal the approach of the hydrogen to the π-π plane is.
  5. Further constraints in the search are no disorder, no errors, R < 0.05,  the H atom position is normalised and this position is defined as being <2.5Å from the C-C bond centroid, which is ~0.3Å < the sum of the van der Waals values for C and H.

The first search is limited to intermolecular contacts between the C-C bond and the H and reveals that for most of the 18 hits, the H approach is close to perpendicular to the centroid but the inclination to the π-π plane is more scattered. The most interesting (shortest H…centroid contact of ~2.22Å, orthogonal approach) can be inspected as KANYAA (dataDOI: 10.5517/CC8JRQ7). 
When the search is repeated for intramolecular contacts, rather shorter distances are obtained for 88 hits and with more variation in the angles of approach. The most interesting candidate (blue dots) is IGELAJ[2] (dataDOI: 10.5517/CC14PBW1 ) which has the very short intramolecular H approach of 1.90Å to the C-C centroid corresponding to ~2.04Å to the carbons,  a contraction of ~0.8Å from the van der Waals sum.

The authors remarked[2]  “that it possesses a better defined intramolecular hydrogen bond compared to the usual molecules for which it is noted“. They also note JOCQEX, which is present in the above plot, but for which there is  a non-orthogonal approach of the hydrogen bond to the π-π plane. The authors do not mention TIBCUD[3] (dataDOI: 10.5517/CCPL0FP), which has a similar close approach of 1.92Å to the C-C centroid, but at an angle inclined to the C-C axis.

IGELAJ, as an intramolecular H-bond, was amenable to calculation of its geometry and properties (inter-molecular interactions would ideally require the periodic lattice to be computed), with the observation[3] that “another test was to compare the energy calculation of IGELAJ to a non-hydrogen-bound version where the OH bond is rotated 180°” and “the results predict IGELAJ to be 7.30 kcal more stable than the non-hydrogen-bound version”. This value,  if correct,  is indeed typical of a very strong hydrogen bond!

Pedant (curious?) as I am, I wanted to be clear what kind of calculated energy was being reported. Was it the difference in total energies, or the energies corrected for ZPE (zero-point-energy) as ΔH or the free energies for which entropy is included as ΔG? The article[3] itself is unclear on this aspect and no energies are reported in the  supporting information. This is an illustration that “supporting information” in most current incarnations may often not provide crucial information; only a full deposition as the management of research (RDM) of FAIR data can provide. This process is illustrated for my own calculations of this system (ωB97XD/Def2-TZVPP, dataDOIs: 10.14469/hpc/2474, 10.14469/hpc/2475), which reveals that  ΔG298 4.8 kcal/mol and ν 3761 cm-1. In comparison when the OH bond is rotated 180° the wavenumber goes up 3956 cm-1, a difference of 195 cm-1 is calculated, which is indeed a large red-shift. But the “non-hydrogen-bound version where the OH bond is rotated 180°” is not a valid reference point for a non-hydrogen bonded isomer, since it manifests instead as a transition state for OH rotation with νi 166 cm-1, there being no minimum other than the π-facially hydrogen bonded one (dataDOI: 10.14469/hpc/2476). So, for the lack of a suitable reference system, we cannot conclude what the strength of this particular hydrogen bond is, nor make any conclusions about it being unusually strong.

So IGELAJ holds the current record for the shortest π-facial hydrogen bond to an alkene, but not necessarily the strongest! I wonder if this record might be broken with the aid of further computational design and prediction?

References

  1. H.S. Rzepa, M.H. Smith, and M.L. Webb, "A crystallographic AM1 and PM3 SCF-MO investigation of strong OH ⋯π-alkene and alkyne hydrogen bonding interactions", J. Chem. Soc., Perkin Trans. 2, pp. 703-707, 1994. https://doi.org/10.1039/p29940000703
  2. M.D. Struble, M.G. Holl, G. Coombs, M.A. Siegler, and T. Lectka, "Synthesis of a Tight Intramolecular OH···Olefin Interaction, Probed by IR,<sup>1</sup>H NMR, and Quantum Chemistry", The Journal of Organic Chemistry, vol. 80, pp. 4803-4807, 2015. https://doi.org/10.1021/acs.joc.5b00470
  3. B. Ndjakou Lenta, K.P. Devkota, B. Neumann, E. Tsamo, and N. Sewald, "4-(1,1-Dimethylprop-2-enyl)-1,3,5-trihydroxy-2-(3-methylbut-2-enyl)-9<i>H</i>-xanthen-9-one", Acta Crystallographica Section E Structure Reports Online, vol. 63, pp. o1629-o1631, 2007. https://doi.org/10.1107/s1600536807009907

The π-π stacking of aromatic rings: what is their closest parallel approach?

Thursday, April 13th, 2017

Layer stacking in structures such as graphite is well-studied. The separation between the π-π planes is ~3.35Å, which is close to twice the estimated van der Waals (vdW) radius of carbon (1.7Å). But how much closer could such layers get, given that many other types of relatively weak interaction such as hydrogen bonding can contract the vdW distance sum by up to ~0.8Å or even more? This question was prompted by the separation calculated for the ion-pair cyclopropenium cyclopentadienide (~2.6-2.8Å).

The search query for the Cambridge structure database is shown below.


The query (dataDOI: 10.14469/hpc/2471) defines centroids for two benzenoid rings, both comprising only 3-coordinated carbons. The sine of an angle subtended at each centroid to the other and to one ring carbon attempts to track how parallel the two rings are (strictly speaking, 12 such angles should be included). If the sines of both angles are 1.00, then the two centroids overlap orthogonally. A search constrained to no disorder, no errors and R < 0.05 reveals 1107 hits at a centroid-centroid distance of < 3.5Å. The colour code (red) indicates the distances in the range 3.4-3.5Å, which matches that of graphite, while distances down to 3.2Å (yellow-green) are not uncommon. 

Here is another way of representing these results, in which the centroid-centroid distances (measured from the positions of 12 carbon atoms and hence statistically more reliable than any individual atom pair distance) are multiplied by either sin(ANGa) or sin(ANGb). The number of occurrences with distances < 3.2Å is less than 32 (out of 1107).

Taking a look at some of these outliers, PAZJEG has two entries, one with a short distance (dataDOI: 10.5517/ccsffzl) and one with a normal distance[1], which does tend to cast doubt on the former.

ZOMSEB[2], DataDOI: 10.5517/CCZS2MF) appears to have the planes of the molecules stacked ~2.5Å apart.

OXUDES02[cite10.1016/j.poly.2016.09.046[/cite], DataDOI: 10.5517/CCDC.CSD.CC1MBBFQ) has a separation of ~2.6Å.

Verifying these and other outliers would require expert inspection of the crystallographic data and its refinement. This might require access to the hkl  structure factors, data which are now being “strongly encouraged” for deposition with the CSD, but which are not present for most structures deposited before ~2016. In extreme cases, the original diffraction images collected by the cameras would allow for a fully independent re-analysis, data which however is rarely if ever deposited.

So the separation of π-π stacked six-membered benzenoid rings is only infrequently less than ~3.2Å in measured crystal structures. There are hints it might reach as short as ~2.6Å, but  such examples with values significantly less than 3.2Å do require expert validation before they can be called real. 


‡See structuredepositioninformation/ “We strongly encourage data to be deposited either with imbedded structure factor data or with an associated FCF or HKL structure factor file.”

References

  1. J. Rogan, D. Poleti, and L. Karanović, "Synthesis, Structure, and Thermal Properties of Two New Inorganic‐organic Framework Compounds: Hexaaqua(<i>μ</i><sub>2</sub>‐1,2,4,5‐benzenetetracarboxylato)‐bis(<i>N</i>,<i>N′</i>‐1,10‐phenathroline)dicobalt(II) Dihydrate and Hexaaqua(<i>μ</i><sub>2</sub>‐1,2,4,5‐benzenetetracarboxylato)‐bis(<i>N</i>,<i>N′</i>‐2,2′‐dipyridylamine)dinickel(II) Tetrahydrate", Zeitschrift für anorganische und allgemeine Chemie, vol. 632, pp. 133-139, 2005. https://doi.org/10.1002/zaac.200500292
  2. P. Das, C.K. Jain, S.K. Dey, R. Saha, A.D. Chowdhury, S. Roychoudhury, S. Kumar, H.K. Majumder, and S. Das, "Synthesis, crystal structure, DNA interaction and in vitro anticancer activity of a Cu(<scp>ii</scp>) complex of purpurin: dual poison for human DNA topoisomerase I and II", RSC Adv., vol. 4, pp. 59344-59357, 2014. https://doi.org/10.1039/c4ra07127a

The “hydrogen bond”; its early history.

Saturday, December 31st, 2016

My holiday reading has been Derek Lowe’s excellent Chemistry Book setting out 250 milestones in chemistry, organised by year. An entry for 1920 entitled hydrogen bonding seemed worth exploring in more detail here.

As with many historical concepts, it can often take a few years to coalesce into something we would readily recognise today, and hydrogen bonds are no exception. Wikipedia is another source of the history and it cites a 1912 article as the origin of the term in relation to the solvation of amines[1] but also notes that the better known setting of water occurs later in 1920.[2] Here I try to capture the essence of the concept with a few diagrams taken from these two articles.

 Firstly “The state of amines in aqueous solution[1] which is mostly concerned with the measurement of ionization constants of primary, secondary and tertiary amines. It boils down to the below:

and the connection to ionization is laid out as:

Since in 1912, Lewis’ electron pair theory of the covalent bond had not yet emerged, the authors use the terms “strong union” and “weak union”, and of course it is the “weak union” that we now know of as the hydrogen bond. Some other comments about this seminal diagram:

  1. The article contains the very explicit and modern term stereochemical, which is used in a manner that suggests it was already common. But there is only a hint at most that the nitrogen atoms might be tetrahedral, or that the “weak union” between (what we now think of as the lone pair on) the nitrogen and the hydrogen of the water is directional.
  2. The second weak union between the tetramethyl ammonium (which we now describe as a cation) and the hydroxide (now described as an anion; both terms are however implied by the description strong electrolyte) is probably not what we would now call a hydrogen bond, more an intimate ion-pair.

The second article in 1920 on water itself[2] is post-Lewis, but perhaps applied in a manner which we would not entirely agree with nowadays. Thus dinitrogen, N≡N is shown as below with just a single connecting bond.

Then we get the interaction between ammonia and water, analogous to the example shown above:

and for water itself:

which in each case shows the central hydrogen having what we now call a valence shell of four electrons, and hence more equivalent to the “strong unions” above. This shows that in 1920 chemists were rapidly adopting Lewis’ representations, but not always entirely successfully.

On balance, I think the 1912 article sets out the modern concept of a hydrogen bond representing a weak union to a hydrogen rather better than the Latimer and Rodebush attempt (at least diagrammatically).


Stereochemical notation is discussed in this post, and it dates from the 1930s.

The modern take is explored here, in which the equilibrium set up between a “weak union” between ammonia and water (the weak electrolyte) and an isomeric “strong union” which represents ionization into an ammonium hydroxide ion-pair (the strong electrolyte) is favoured for the former by ΔG ~6 kcal/mol.

The equilibrium between a “weak union” of two water molecules and the fully ionized strong union of hydronium hydroxide favours the former by ΔG ~23 kcal/mol.

 This 1920 representation does imply symmetry for the hydrogen, being ~equally disposed between the two oxygens. We now know that such symmetric hydrogen bonding is not unusual (see this post for how to fine-tune a hydrogen bond into this situation) but rather than requiring four electrons as implied in the diagram above, it is now better described as a three-centre-two-electron bond instead.

References

  1. T.S. Moore, and T.F. Winmill, "CLXXVII.—The state of amines in aqueous solution", J. Chem. Soc., Trans., vol. 101, pp. 1635-1676, 1912. https://doi.org/10.1039/ct9120101635
  2. W.M. Latimer, and W.H. Rodebush, "POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE.", Journal of the American Chemical Society, vol. 42, pp. 1419-1433, 1920. https://doi.org/10.1021/ja01452a015

The "hydrogen bond"; its early history.

Saturday, December 31st, 2016

My holiday reading has been Derek Lowe’s excellent Chemistry Book setting out 250 milestones in chemistry, organised by year. An entry for 1920 entitled hydrogen bonding seemed worth exploring in more detail here.

As with many historical concepts, it can often take a few years to coalesce into something we would readily recognise today, and hydrogen bonds are no exception. Wikipedia is another source of the history and it cites a 1912 article as the origin of the term in relation to the solvation of amines[1] but also notes that the better known setting of water occurs later in 1920.[2] Here I try to capture the essence of the concept with a few diagrams taken from these two articles.

 Firstly “The state of amines in aqueous solution[1] which is mostly concerned with the measurement of ionization constants of primary, secondary and tertiary amines. It boils down to the below:

and the connection to ionization is laid out as:

Since in 1912, Lewis’ electron pair theory of the covalent bond had not yet emerged, the authors use the terms “strong union” and “weak union”, and of course it is the “weak union” that we now know of as the hydrogen bond. Some other comments about this seminal diagram:

  1. The article contains the very explicit and modern term stereochemical, which is used in a manner that suggests it was already common. But there is only a hint at most that the nitrogen atoms might be tetrahedral, or that the “weak union” between (what we now think of as the lone pair on) the nitrogen and the hydrogen of the water is directional.
  2. The second weak union between the tetramethyl ammonium (which we now describe as a cation) and the hydroxide (now described as an anion; both terms are however implied by the description strong electrolyte) is probably not what we would now call a hydrogen bond, more an intimate ion-pair.

The second article in 1920 on water itself[2] is post-Lewis, but perhaps applied in a manner which we would not entirely agree with nowadays. Thus dinitrogen, N≡N is shown as below with just a single connecting bond.

Then we get the interaction between ammonia and water, analogous to the example shown above:

and for water itself:

which in each case shows the central hydrogen having what we now call a valence shell of four electrons, and hence more equivalent to the “strong unions” above. This shows that in 1920 chemists were rapidly adopting Lewis’ representations, but not always entirely successfully.

On balance, I think the 1912 article sets out the modern concept of a hydrogen bond representing a weak union to a hydrogen rather better than the Latimer and Rodebush attempt (at least diagrammatically).


Stereochemical notation is discussed in this post, and it dates from the 1930s.

The modern take is explored here, in which the equilibrium set up between a “weak union” between ammonia and water (the weak electrolyte) and an isomeric “strong union” which represents ionization into an ammonium hydroxide ion-pair (the strong electrolyte) is favoured for the former by ΔG ~6 kcal/mol.

The equilibrium between a “weak union” of two water molecules and the fully ionized strong union of hydronium hydroxide favours the former by ΔG ~23 kcal/mol.

 This 1920 representation does imply symmetry for the hydrogen, being ~equally disposed between the two oxygens. We now know that such symmetric hydrogen bonding is not unusual (see this post for how to fine-tune a hydrogen bond into this situation) but rather than requiring four electrons as implied in the diagram above, it is now better described as a three-centre-two-electron bond instead.

References

  1. T.S. Moore, and T.F. Winmill, "CLXXVII.—The state of amines in aqueous solution", J. Chem. Soc., Trans., vol. 101, pp. 1635-1676, 1912. https://doi.org/10.1039/ct9120101635
  2. W.M. Latimer, and W.H. Rodebush, "POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE.", Journal of the American Chemical Society, vol. 42, pp. 1419-1433, 1920. https://doi.org/10.1021/ja01452a015