Posts Tagged ‘research data management’

Research data: Managing spectroscopy-NMR.

Wednesday, March 16th, 2016

At the ACS conference, I have attended many talks these last four days, but one made some “connections” which intrigued me. I tell its story (or a part of it) here.

But to start, try the following experiment.

  1. Find a Word document of .docx type on your hard drive
  2. Remove the .docx suffix and replace it with a .zip suffix.
  3. Expand as if it is an archive (it is!).
  4. A folder is created and this itself contains four further folders. These all contain XML files, and in the sub-folder actually called word you will find something called document.xml That file contains the visible content of the document; all the others are support documents, including styles etc.

The reason this is important was made clear in Santi Dominguez’ talk. Most of it was concerned with introducing Mbook, an ELN (electronic laboratory notebook) but the relevance to the above comes from his introduction of Mpublish, a forthcoming product targeting the area of research data management. What is the connection? Well, NMR spectrometers produce raw outputs as collections of files, much in the manner of the exploded word document above. Some files contain the raw FID, others contain the acquisition parameters, etc. These files are then turned into the traditional spectra by suitable processing software such as Mestrenova (part of the same ecosystem as Mpublish). Most users of such programs then squirt the spectra into a PDF file and it is this last document that is preserved as “research data” – almost invariably this is the version sent off to journals as the supporting information or SI for the article. SI is called information for a good reason; in such a container it is very often not easily usable data, and functions just visually.

So what is the problem? Well, the conversion of the NMR fileset (and quite possibly many other forms of spectroscopy) into a PDF file is a lossy process. It cannot be reversed; information has been lost. And only really a human who can easily retrieve and interpret such a visual presentation.

Santi described how Mpublish can assemble all the files associated with the instrumental outputs, optionally add chemical structure and other information, collect suitable metadata describing the contents and create a .zip archive. As we saw with Word however, the suffix does not even need to be .zip. It was suggested that it be this information-complete archive that should really be used as SI to accompany an article in which NMR data is invoked to support the narrative. In the reverse process, anyone downloading this zip archive could themselves potentially acquire full access, without information loss, to the original NMR data. There is a little further magic that needs to be included to make the process work which I do not include here. When Mpublish becomes available to play with, I will complete that story here.

It is good to report that software is starting to appear which enhances the management and reporting of research data as part of the publication process. The “rules” and “best practice” of this game are still being written however. In this regard, I feel that it is the researchers themselves that must play a vital role in defining the rules. Let us not cede that role just to publishers.

Global initiatives in research data management and discovery: searching metadata.

Monday, March 7th, 2016

The upcoming ACS national meeting in San Diego has a CINF (chemical information division) session entitled "Global initiatives in research data management and discovery". I have highlighted here just one slide from my contribution to this session, which addresses the discovery aspect of the session.

Data, if you think about it, is rarely discoverable other than by intimate association with a narrative or journal article. Even then, the standard procedure is to identify the article itself as being of interest, and then digging out the "supporting information", which normally takes the form of a single paginated PDF document. If you are truly lucky, you might also get a CIF file (for crystal structures). But such data has little life of its own outside of its parent, the article. Put another way, it has no metadata it can call its own (metadata is data about an object, in this case research data). An alternative is to try to find the data by searching conventional databases such as CAS,  Beilstein/Reaxys or CSD, and there of course the searches can be very precise. But (someone) has to pay the bills for such accessibility.

We are now starting to see quite different solutions to finding data (the F in FAIR data, the other letters representing accessibility, interoperability and re-usability). These solutions depend on metadata being a part of the solution from the outset, rather than any afterthought produced as a commercial solution. The collection of metadata is part of the overall process called RDM, or research data management, perhaps even the most important part of it. In exchange for identifying metadata about one's data, one gets back a "receipt" in the form of a persistent identifier for the data, more commonly known as a DOI. The agency that issues the DOI also undertakes to look after the donated metadata, and to make it searchable. The table below shows eight searches of such metadata, one example of how to acquire statistics relating to the usage of the data and one search of how to find repositories containing the data.

Search queries enabled by the use of metadata in data publication
# Search query* Instances retrieved:
1 http://search.datacite.org/ui?q=alternateIdentifier:InChIKey:*  InChI identifier
2 http://search.datacite.org/ui?q=alternateIdentifier:InChI:*  InChI key 
3 http://search.datacite.org/ui?q=alternateIdentifier:InChIKey:CULPUXIDFLIQBT-UHFFFAOYSA-N InChI key CULPUXIDFLIQBT-UHFFFAOYSA-N 
4 http://search.datacite.org/ui?q=ORCID:0000-0002-8635-8390+alternateIdentifier:InChIKey:* ORCID 0000-0002-8635-8390 AND (boolean) InChI key.
5 http://search.datacite.org/ui?q=ORCID:0000-0002-8635-8390+alternateIdentifier:InChI:InChI=1S/C9H11N5O3* ORCID 0000-0002-8635-8390 AND (boolean) + InChI string 1S/C9H11N5O3 with the * wild.
6 http://search.datacite.org/ui?q=has_media:true&fq=prefix:10.14469 Has content media for Publisher 10.14469 (Imperial College)
7 http://search.datacite.org/ui?q=format:chemical/x-* Data format type chemical/x-* 
8 http://search.datacite.org/api?&q=prefix:10.14469& fq=alternateIdentifier:InChIKey:*& fl=doi,title,alternateIdentifier& wt=json&rows=15
http://api.labs.datacite.org/works?q=prefix:10.14469+AND+alternateIdentifier:InChIKey:*
First 15 hits in JSON format, batch query mode
9 http://stats.datacite.org/?fq=datacentre_facet:"BL.IMPERIAL – Imperial College London" resolution statistics for publisher 10.14469 (Imperial College) per month
10 http://service.re3data.org/search?query=&subjects[]=31 Chemistry Research data repository search for Chemistry (135 hits)

In this instance the three MIME media types are chemical/x-wavefunction, chemical/x-gaussian-checkpoint and chemical/x-gaussian-log. See[1] for chemical MIME (multipurpose internet media extensions).


Anyone familiar with the standard ways of finding data (CAS, CSD, Reaxys) will appreciate that the above does not yet have the finesse to find eg sub-structures of chemical structures, synthetic procedures or molecular properties. My including it here is primarily to show some of the potential such systems have, and to remark particularly that the batch query capability of this infrastructure could indeed be used in the future to construct much more sophisticated systems.  Oh, and to the end-user at least, the searches shown above do not require institutional licenses to use. Both the data and its metadata is free, mostly with a CC0 or CC BY 3.0 license for re-use (the R of FAIR).

If more of interest related to this topic emerges at the ACS session,  I will report back here.

References

  1. H.S. Rzepa, P. Murray-Rust, and B.J. Whitaker, "The Application of Chemical Multipurpose Internet Mail Extensions (Chemical MIME) Internet Standards to Electronic Mail and World Wide Web Information Exchange", Journal of Chemical Information and Computer Sciences, vol. 38, pp. 976-982, 1998. https://doi.org/10.1021/ci9803233